Inrak Choi

choiinrak@gmail.com || www.inrakchoi.com

Education

Ph.D. in Mechanical Engineering

2016 - 2019

Stanford University (Stanford, CA)

- Thesis: Handheld Haptic Feedback for Grasping in Virtual Reality
- Thesis Committee: Sean Follmer (advisor), Mark Cutkosky, Allison Okamura, Ken Salisbury
- Cumulative GPA: 3.93 / 4.0

M.S. in Mechanical Engineering

2013 - 2016

Stanford University (Stanford, CA)

- Concentration: Dynamics, Robotics, and Research (Haptics)
- Cumulative GPA: 3.95 / 4.0

B.S. in Mechanical Engineering

2009 - 2013

Korea University (Seoul, Korea)

Cumulative GPA: 4.23 / 4.5

Professional Employment

Systems Analyst (Robotic Algorithms and Control Engineer)

Dec 2022 – present

Intuitive Surgical, Inc. (Sunnyvale, CA) Supervised by Saleh Tabandeh, Ph.D.

- Develop control algorithms to improve the performance and safety of Da Vinci Single Port.
- Measure and characterize the mechanical performance, such as friction and range of motion, of the new instruments and endoscope under development.
- Develop software that evaluates the performance of manufactured instruments
- Analyze the kinematic/dynamic/event data of the Da Vinci system in the field and the surgeon behavior to improve the instrument design and robot algorithm.

Postdoctoral Research Fellow (Mandatory Military Service)

Nov 2019 - Nov 2022

Seoul National University Soft Robotics & Bionics Lab (Seoul, Korea) Advised by Yong-Lae Park, Ph.D.

- This three-year research position replaces actual mandatory military service in South Korea. While I
 much focused on haptics in the PhD years, I developed various actuation and sensing mechanisms
 that can be widely applied to robots/devices.
- Designed pneumatic jamming-based cellular composites having exceptional strength/stiffness densities for selectively stiffening garments.
- Designed a submillimetre-thick linear three-phase electrostatic actuator package with a hybrid configuration with an electrostatic clutch. The actuator is also capable of noise-free high-resolution position sensing and proprioceptive force sensing utilizing the Moiré effect.
- Developed a robotic tadpole capable of agile escape maneuvers using an inertia-driven actuation.

Graduate Research Assistant

June 2015 - Sep 2019

Stanford University SHAPE Lab (Stanford, CA) Advised by Sean Follmer, Ph.D.

- Developed handheld/wearable haptic interfaces using various novel kinesthetic and vibrotactile feedback mechanisms and investigated additional pseudo haptic effects through user studies for more realistic VR/AR interaction. Won several awards in top HCI conferences and filed six patents.
- Investigated passive & energy-dissipative mechanisms, such as jamming, braking, and clutching, for lightweight and power-efficient wearable haptic interfaces.
- Led multidisciplinary team collaboration with researchers at MIT Media Lab, Facebook Reality Labs, and Google Research, and Hyundai Motor Company.

Research Intern Summer 2017

Microsoft Research (Redmond, WA)

- Mentor: Mike Sinclair, Hrvoje Benko, Ph.D., Eyal Ofek, Ph.D., Christian Holz, Ph.D.
- Developed a multifunctional VR haptic controller, CLAW, and quantitatively validated the
 effectiveness of the device in VR scenarios through human-subject studies. The work has been
 published to a top HCI conference, CHI, and patented.

Research Intern Summer 2015

Hansen Medical, Inc. (Mountain View, CA) Advised by June Park, Ph.D.

- Devised new active guidewire manipulation mechanisms for the Sensei robotic catheter system.
- Wrote two invention disclosures in three months then applied for a patent.

Graduate Research Assistant

Jan 2014 - May 2015

Stanford University Artificial Intelligence Laboratory (Stanford, CA) Advised by Oussama Khatib, Ph.D.

- Human-friendly robot project. Designed and assembled a wrist and a gripper.
- Implemented macro-mini force control with the hybrid actuation system of pneumatic artificial muscles and electrical dc motors.

Research Interests

I am interested in designing interfaces that can physically help people in their daily lives. Past projects include physical user interfaces for VR/AR/Automotive applications, human augmentation with robotic systems, and surgical robots. I often analyze the human perception and existing systems in nature and apply the results to interface design.

keywords: human-computer interaction, haptics, robotics

Publications

Google Scholar: https://scholar.google.com/citations?user=zHH LwkAAAAJ&hl=ko&oi=ao

Journal Articles

- [J.1] C. Ha*, I. Choi*, J.-K. Lee, J. Oh, W. Ahn, and S.-H. Han. Anterolateral Dual Plate Fixation for Distal Metaphyseal Diaphyseal Junction Fracture of the Humerus: Biomechanical Finite Element Analysis with Clinical Results. Clinics in Orthopedic Surgery. 2024. (Accepted) * equally contributed.
- [J.2] **I. Choi***, S.J. Yoon*, and Y.-L. Park. Linear electrostatic actuators with Moiré-effect optical proprioceptive sensing and electroadhesive braking. International Journal of Robotics Research. 2023.
 - * equally contributed.
- [J.3] G. Shin, Y.J. Choi, B.J. Jeon, **I. Choi**, S. Song, and Y.-L Park. Soft Electromagnetic Artificial Muscles Using High-Density Liquid-Metal Solenoid Coils and Bistable Stretchable Magnetic Housings. Advanced Functional Materials. 2023.
- [J.4] B. Do, **I. Choi**, and S. Follmer. An All-Soft Variable Impedance Actuator Enabled by Embedded Layer Jamming. IEEE/ASME Transactions on Mechatronics. 2022.
- [J.5] J. Kwon*, I. Choi*, M. Park, J. Moon, B. Jeong, P. Pathak, J. Ahn, and Y.-L. Park. Sandwich Jamming Structures with Cellular Cores and Rubber-Laminated Face Sheets for Assistive and Protective Wearables. Advanced Materials Technologies. 2022.

 * equally contributed.
- [J.6] **I. Choi**, E. J. Gonzalez, and S. Follmer. Hybrid Actuation with Unidirectional Clutches for Handheld Haptic Controllers. IEEE Robotics and Automation Letters, 2021.
- [J.7] I. Choi, Y. Zhao, E. J. Gonzalez, and S. Follmer. Augmenting Perceived Softness of Haptic Proxy Objects through Transient Vibration and Visuo-Haptic Illusion in Virtual Reality. IEEE Transactions on Visualization and Computer Graphics, 2020.
- [J.8] A. Dementyev, J. Hernandez, **I. Choi**, S. Follmer, and J. Paradiso. 2018. Epidermal Robots: Wearable Sensors That Climb on the Skin. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2.3: 1-22, 2018. Distinguished Paper Award (Top 4%)
- [J.9] I. Choi, N. Corson, L. Peiros, E. W. Hawkes, S. Keller, and S. Follmer. A Soft, Controllable, High Force Density Linear Brake Utilizing Layer Jamming. IEEE Robotics and Automation Letters, 2018.

Journal Articles (in preparation or under review)

- [J.10] S. J. Yoon*, **I. Choi***, and Y.-L. Park. Modeling Linear Sliding Electrostatic Motors with Skewing. (Written for IEEE Transactions on Industrial Electronics)
 - * equally contributed.
- [J.11] J. Choi*, I. Choi*, S. J. Yoon*, J. Kim, and Y.-L. Park. Inertia-Driven Swimming Robot with Agile Maneuvers Inspired by C-start Motion. (*In preparation for Science Robotics*)

 * equally contributed.

[J.12] **I. Choi**, S. Song, S. Chang, J. Cho, H. Yoo, T. Kim, K. Kim, S. Ahn, K.J. Cho, Y.-L. Park. Proprioception in Soft Actuators: A Review. (*In preparation*)

Refereed Conference Articles

- * Top conferences in the research area of Human Computer Interaction. Papers in these conferences have an acceptance rate of 15-25%, refereed by 4-5 experts.
- [C.1] I. Choi, E. Ofek, H. Benko, M. Sinclair, and C. Holz. CLAW: A Multifunctional Handheld Haptic
 * Controller for Grasping, Touching, and Triggering in Virtual Reality. In Proceedings of the 2018
 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 2018.
- [C.2] I. Choi, H. Culbertson, M. R. Miller, A. Olwal, and S. Follmer. Grabity: A Wearable Haptic
 * Interface for Simulating Weight and Grasping in Virtual Reality. In Proceedings of the 30th Annual ACM Symposium on User Interface Software & Technology, 2017. Best Paper Award (Top 1%)
- [C.3] H.-L. C. Kao, D. Ajilo, O. Anilionyte, A. Dementyev, I. Choi, S. Follmer, and C. Schmandt. Exploring interactions and perceptions of kinetic wearables. In Proceedings of the 2017 Conference on Designing Interactive Systems, 2017.
- [C.4] A. Dementyev, H.-L. C. Kao, I. Choi, D. Ajilo, M. Xu, J. A. Paradiso, C. Schmandt, and S. Follmer.
 * Rovables: Miniature On-Body Robots as Mobile Wearables. In Proceedings of the 29th Annual ACM Symposium on User Interface Software & Technology, 2016. Best Paper Award (Top 1%)
- [C.5] I. Choi, E. W. Hawkes, D. L. Christensen, C. J. Ploch, and S. Follmer. Wolverine: A Wearable Haptic Interface for Grasping in Virtual Reality. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016.

Demos & Posters

- [D.1] I. Choi, E. Ofek, H. Benko, M. Sinclair, and C. Holz. Demonstration of CLAW: A Multifunctional Handheld VR Haptic Controller. In Adjunct proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 2018.
- [D.2] M. Sinclair, E. Ofek, C. Holz, **I. Choi**, E. Whitmire, E. Strasnick, H. Benko. Three Haptic Shape-Feedback Controllers for Virtual Reality. IEEE Virtual Reality, 2018
- [D.3] A. Dementyev, J. Hernandez, S. Follmer, **I. Choi**, and J. Paradiso. SkinBot: A Wearable Skin Climbing Robot. In Adjunct proceedings of the 30th Annual ACM Symposium on User Interface Software & Technology, 2017.
- [D.4] I. Choi and S. Follmer. Wolverine, ACM Interactions, Demo Hour, Jan/Feb 2017.
- [D.5] I. Choi and S. Follmer. Wolverine: A Wearable Haptic Interface for Grasping in Virtual Reality. In Adjunct proceedings of the 29th Annual ACM Symposium on User Interface Software & Technology (UIST 2016) Best Demo Award (Top 3)

Patents

- [P.1] S. Lee, S. Follmer, and **I. Choi**, "Vehicle and Method of Controlling the same," 2023. (U.S. Patent: 11,667,196)
- [P.2] S.-M. Park, T. H. Kwon, J. Lee, I. Choi, S. Kim, "Smart Toilet System with Automatic Stool Collection Process," 2023. (Submitted to Stanford OTL)
- [P.3] B. H. Do, **I. Choi**, S. Follmer, "Soft Variable Impedance Actuator Using Embedded Jamming Layer," 2023. (U.S. Appl. No.: 18/109,432)
- [P.4] S. Lee, S. Follmer, and **I. Choi**, "Input Device and Vehicle Including the same, and Method of Controlling Input Device," 2022. (U.S. Patent: 11,377,044)
- [P.5] **I. Choi**, J. Park, and A. Kokish, "Active Drive for Guidewire Manipulation," 2022. (U.S. Patent: 11,241,559)
- [P.6] Y.-L. Park, G.W. Shin, Y. Choi, B.J. Jeon, and I. Choi, "Bi-stable Soft Electromagnetic Actuator," 2022. (U.S. Appl. No.: 17/896,987)
- [P.7] C. Holz, E. Ofek, M. J. Sinclair, H. Benko, **I. Choi**, and E. Whitmire, "Controller with haptic feedback," 2020. (U.S. Patent: 10,617,942)
- [P.8] **I. Choi**, H. Culbertson, and S. Follmer, "Grabity: A Wearable Haptic Interface for Simulating Weight and Grasping in Virtual Reality," 2020. (U.S. Patent: 10,852,872)
- [P.9] E. W. Hawkes, **I. Choi**, and S. Follmer, "Wolverine: A Wearable Haptic Interface for Grasping in Virtual Reality," 2019. (U.S. Patent: 10,248,201)
- [P.10] Y.-L. Park, G. Shin, Y. Choi, B. Jeon, and **I. Choi**, "Bi-stable Soft Electromagnetic Actuator," 2021. (Korea Appl. No.:10-2021-0113744)
- [P.11] Y.-L. Park, J. Kwon, **I. Choi**, M. Park, and B. Jeong, "Variable Stiffness Structure with Sandwich Structure," 2021. (Korea Appl. No: 10-2021-0115721)
- [P.12] **I. Choi**, "A Device for Removing the Snow of Vinyl House," 2008. (Korea Utility Model Appl. No. 20-2008-0000167)

Honors and Awards

Best Paper Award. UIST 2017.	2017
Best Paper Award. UIST 2016.	2016
Best Demo Award. UIST 2016.	2016
Distinguished Paper Award. IMWUT 2018 Vol. 2.	2018

AO Trauma Asia Pacific Research Grants. Project member.	2022
Honorable Mention. Fast Company Innovation by Design Awards.	2017
Young Engineers Honor Society. The National Academy of Engineering of Korea.	2011-present
Great Honor Student for Academic Achievement. Korea University.	2009-2013
Presidential Science Scholarship. Korea	2009-2013

Teaching Experience

Dynamic Systems, Vibrations and Control (ME 161/261)Stanford Univesity (Stanford, CA) Course Assistant with instructor Paul Mitiguy, Ph.D.

Advanced Dynamics & Computation (ME 331A) 2014 and 2015

Stanford University (Stanford, CA)
Course Assistant with instructor Paul Mitiguy, Ph.D.

Advanced Dynamics, Simulation & Control (ME 331B) 2014 and 2015

Stanford Univesity (Stanford, CA) Course Assistant with instructor Paul Mitiguy, Ph.D.

Experimental Robotics (CS 225A) 2015

Stanford University (Stanford, CA)
Course Assistant with instructor Oussama Khatib, Ph.D.

Introduction to Robotics (CS 223A) 2015

Stanford University (Stanford, CA)
Course Assistant with instructor Oussama Khatib, Ph.D.

Academic Service

Reviewer

More than 40 papers in HCI / VR / Haptics / Robotics such as CHI, UIST, IEEE VR, ToH, SoRo, TMECH, Actuators, ICRA, IROS, RA-L, IJHCI, Haptics Symposium, Eurohaptics, TOMM, BioRob, ISMAR, IMWUT.

Selected Media Coverage

BBC Click "Robot seeks out skin cancer with suction" October 15, 2018 **Digital Trends** "MIT's Creepy-crawly Robot can Help Monitor Your Health" October 1, 2018 **New Scientist** " This robot crawls over your body and scans your skin with a microscope" September 28, 2018

Gizmodo "Microsoft Wants You to Touch the VR World With a Giant CLAW." March 12, 2018 **The Register** "Microsoft floats feelers for fake worlds." March 8, 2018 **Engadget** "Microsoft's mad scientists are making AR more tactile." March 12, 2018

Co.Design Fast Company "Crazy Microsoft Is The Best Microsoft." March 9, 2018 **Road to VR** "Microsoft Shows New Research in Haptics With 'CLAW' VR Controller Prototype." March 13, 2018

Recode "These tiny, wearable robots can cling to your clothes and drive around your body." October 19, 2016

The Verge "These robots will crawl over your clothes for some reason." October 21, 2016 **Engadget** "Tiny body-roaming robots could be the future of wearables." October 19, 2016

Digital Trends "Get a grip, bub: Wolverine haptic device lets you grasp objects in VR." October 27, 2016

Futurism "Meet Wolverine, the Tech That Lets You Grab Objects in Virtual Reality." October 26, 2016 **Motherboard** "Haptic Feedback Prototype Lets You Grasp Objects in VR" October 23, 2016 **IEEE Spectrum** "Video Friday: Robot Toes, Wolverine Haptic Hand, and More From IROS 2016" October 21, 2016

Skills

- Experience & interaction prototyping (Unity, Adobe CC)
- User study (quantitative & qualitative study design, statistical analysis using R)
- Programming (C, Python, MATLAB)
- Simulation (COMSOL, MATLAB, LTspice, non-linear pneumatic actuators, electromagnetic actuators, multi-layer composites, non-linear dynamic systems including friction and damping, analog circuits)
- Theoretical modelling (pneumatic, electrostatic, and electromagnetic actuators made of soft/flexible materials, kinematics and dynamics of multi-linkage robotic systems)
- Mechatronics (circuits, PCB, closed-loop control, actuators and sensors)
- Hardware design (rapid prototyping, CAD, machining, system-level design of haptic interfaces and robotic systems)
- Spoken languages (Korean native, English Fluent)

References

- Sean Follmer, PhD (PhD Advisor)
 Associate Professor in Mechanical Engineering Stanford University
 sfollmer@stanford.edu
- Yong-Lae Park, PhD (Postdoc Advisor)
 Professor in Mechanical Engineering
 Seoul National University
 ylpark@snu.ac.kr
- Saleh Tabandeh, PhD (Supervisor)
 Senior Manager Systems Analysis
 Intuitive Surgical, Inc.
 saleh.tabandeh@intusurg.com
- Eyal Ofek, PhD (Research Collaborator)

Principal Researcher Microsoft Research eyal.ofek@gmail.com

Paul Mitiguy, PhD (Teaching Collaborator)
 Lead TRI/Stanford Liaison at Toyota Research Institute
 Adjunct Professor in Mechanical Engineering at Stanford University mitiguy@stanford.edu